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Abstract. This paper describes a model formed of a set of elliptic partial differential equations
involving Beltramians of coordinates for generating the curved surfaces at the separation of two
different media. The main point is that the differential equations are formed in such a way
that the sum of the local principal curvatures appears explicitly, which in turn depends on the
physical and chemical properties of the two media. This dependence is quite obvious as far as
the problem of surface tension is concerned. The developed partial differential equations have
been solved numerically for the simple case of a fluid in contact with a vertical wall and for
generation of the surface of revolution due to the capillary effect in a tube of small radius. These
examples demonstrate the application of the method when the surface tension is important. The
method may be of value in tackling other problems, such as the generation of synclastic and
anticlastic surfaces, provided that the local principal curvatures can be related to the coordinates
by using some physical principle.

1. Introduction

The surface phenomenon occurring near the surface of separation of two continuous media
depends on the physical properties of the media. If the media are in mechanical and
thermodynamic equilibrium then the resulting surface of separation can be determined by
solving a set of second-order partial differential equations (PDEs). These PDEs explicitly
contain some differential-geometric terms which have a direct bearing on the surface
phenomena. The motivation of this work is essentially due to the fact that the surface-
generating or shape-determination equations, i.e. the PDEs, explicitly depend on the local
principal curvatures of the surface and, as shown in Batchelor [1], Case [2], Landau and
Lifshitz [3], Cottrell [4], and Defay and Prigogine [5], their sum is directly related to the
surface tension.

The differential equations to be presented in this paper were developed by Warsi [6–8]
for an entirely different purpose. The purpose then was to have a set of model equations
for generating a desired coordinate system in a given surface of arbitrary shape. However,
a closer study of these equations reveals that the same equations can be used to generate
a surface if the first and second fundamental forms of a surface satisfying the Mainardi–
Codazzi equations are given. In fact, the same equations with a slight modification can be
used to generate hypersurfaces in a four-dimensional manifold [9].

In this paper a concise description of the governing equations which automatically
involve the Beltramians of surface coordinates is given. A reduced form of these equations
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Figure 1. Determination of the shape surfacez = f (ζ, ξ).

is then used to consider the case of a fluid surface in surface tension as discussed by Landau
and Lifshitz [3, p 235] and the case of the surface of revolution of the meniscus for a liquid
in a capillary tube of circular cross section. A comparison of the numerical and analytic
solutions for the first case is shown in figure 2. The PDEs stated here can also be used in
other areas of shape determination when some differential-geometric properties have been
specified.

2. Analysis and applications

Let xi, i = 1, 2, 3, be a right-handed curvilinear coordinate system in a three-dimensional
Euclidean space of Cartesian coordinatesr = (x, y, z). For simplicity of exposition we
takex2 = η = constant as the surface, in which the coordinates arex3 = ζ andx1 = ξ . By
using the formulae of Gauss (e.g. Kreyszig [10]), Warsi [7] obtained the following PDEs:

Dr +G2
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∂ξ

]
= nR (1)

where

D = g11
∂2

∂ζ 2
− 2g31

∂2

∂ζ∂ξ
+ g33

∂2

∂ξ2

G2 = g11g33− (g31)
2

R = G2(kI + kII )

n = (X, Y, Z) = unit outward drawn normal.

(2)

Furthermore,

12ζ = − 1

G2
(g33ϒ

3
11− 2g31ϒ

3
31+ g11ϒ

3
33)

12ξ = − 1

G2
(g33ϒ

1
11− 2g31ϒ

1
31+ g11ϒ

1
33)

(3)

are the Beltramians of the coordinatesζ andξ , respectively.
In (2) and (3),gαβ (α, β,= 3, 1) are the metric coefficients and′ϒδ

αβ (δ = 3, 1, α, β =
3, 1) are the surface Christoffel symbols [11]. The important thing to note here is the explicit
appearance ofkI and kII which are the local principal curvatures, and the sumkI + kII is
invariant (except for sign) to coordinate transformation. It has been shown by Warsi [8]
that the set of equations in (1) also satisfy the equations of Weingarten (e.g. Kreyszig [10]).
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From this we conclude that equation (1) is free of empiricism and should be applicable
to all cases of surface generation which are representable by second-order continuously
differentiable functionsr = (x(ζ, ξ), y(ζ, ξ), z(ζ, ξ)). Three distinct cases can be studied
by using equation (1).

(i) Suppose the surface is given in the formF(x, y, z) = 0, or,z = f (x, y), thenkI+kII

can be expressed as a function ofx, y, z. Furthermore, the Beltramians12ζ and12ξ can
be chosen arbitrarily, including12ζ = 0 and12ξ = 0, to have a desired distribution of
the coordinate curvesζ and ξ . This is the problem of surface grid generation where the
parametric space(ζ, ξ) can be mapped to the integer space(K, I).

(ii) If the coefficient of the first and the second fundamental formsgαβ and bαβ ,
respectively, are given and satisfy the Mainardi–Codazzi equations then a surface can be
generated by solving equation (1), which is unique except for its position in space (cf Warsi
[9]). In this case

kI + kII = gαβbαβ (4)

wheregαβ are the contravariant components of the metric tensor and

gαγ gβγ = δαβ
with the repeated indices implying a sum. Equation (4) is invariant to coordinate
transformation.

(iii) If kI + kII is a known function ofr = (x, y, z) then a surface can be generated by
solving equation (1) under appropriate boundary conditions.

The subject matter of this paper is item (iii). All cases (i)–(iii) require a numerical
method for the solution of the PDEs. Since the equations are elliptic and quasilinear,
the method of successive-over-relaxation (SOR) with iteration seems to work well for all
cases. If the problem can be posed as an initial-value problem, then the Runge–Kutta
method works quite well.

To demonstrate the use of the developed equation, we consider the problem of surface
tension between two media, denoted by 1 and 2, which are separated by a curved surface.
Furthermore, we assume that the normaln to the surface is directed in medium 1. Following
the results obtained by Batchelor [1], the relation between the sum of the principal curvatures
and the stress tensor can be put in the form

−α(kI + kII )n = (T1− T2) · n (5)

whereT is the stress tensor, which according to Stokes’ law is

T = −pI + σ. (6)

In (6) p is the pressure,σ is the deviatoric stress tensor andI is the unit tensor. In (5),
the subscripts 1 and 2 onT denote the respective medium, andα is the surface-tension
coefficient. Substituting (6) in (5), we obtain

α(kI + kII )n = (p1− p2)n− σ1 · n+ σ2 · n. (7)

Equation (7) is valid for all cases, namely, synclastic (both centres of curvature lie on the
same side), or anticlastic (centres lie on opposite sides) surfaces. In a gravitational field
and neglecting the effect of viscosity, equation (7) reduces to Laplace’s formula

α(kI + kII ) = p1− p2. (8)

A large class of shape formations due to surface tension have the formz = f (x, y). In
such cases taking

x = ζ y = ξ z = f (ζ, ξ)
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the Beltramians as stated in equations (3) are

12ζ = 12x = − zx
G2

2

Dz

12ξ = 12y = − zy
G2

2

Dz.

Furthermore,

g11 = 1+ z2
y g31 = g13 = zxzy g33 = 1+ z2

x

Dz = (1+ z2
y)zxx − 2zxzyzxy + (1+ z2

x)zyy

G2 = 1+ z2
x + z2

y

and the components of the normaln are

X = −zx/G1/2
2 Y = −zy/G1/2

2 Z = 1/G1/2
2 .

Thus all three equations from the vector equation (1) reduce to a single scalar equation

Dz−G3/2
2 (kI + kII ) = 0

or

(1+ z2
y)zxx − 2zxzyzxy + (1+ z2

x)zyy = (1+ z2
x + zy)3/2(kI + kII ) (9)

where a variable subscript denotes a partial derivative. A computer program to solve
equation (9) for a given functionkI + kII under the appropriate boundary condition is
available to determine the shape function. The above discussion is summarized by the
sketch in figure 1.

As an application of the equations developed above, we consider the fluid surface in a
gravitational field with medium 2 as a fluid and medium 1 as air. Thus,

p1 = patm p2 = constant− ρgz
whereρ is the fluid density andz is measured vertically upwards. Thus,

p1− p2 = ρgz+ constant

and from (8)

kI + kII = 2z

a2
+ constant (10)

wherea =
(

2α
ρg

)1/2
is the capillary constant. For the case of a fluid surface in a gravitational

field and bounded on one side by a wall parallel to thez-coordinate (Landau and Lifshitz
[3, p 235]), since bothkI and kII vanish whenz = 0, the constant appearing in (10) is
zero. Furthermore, leth be the maximum value ofz where the fluid attaches to the wall.
Non-dimensionalizing all the quantities in equation (9) byh and using the same symbols,
the governing equation becomes

(1+ z2
y)zxx − 2zxzyzxy + (1+ z2

x)zyy = 2
h2

a2
(1+ z2

x + z2
y)

3/2z. (11)

The appropriate boundary conditions are

z(0, y) = 1 z(∞, y) = 0

zx(0, y) = − cotθ zx(∞, y) = 0

zy(x, 0) = 0 zy(x,∞) = 0
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Figure 2. Trace of the surface in thexz-plane. The surface is formed due to surface tension
with a wall on the left along thez-axis and free on the right. The contact height ish and the
contact angle isθ = 5◦. The surface extends along they-axis, andz = 0 at x = ∞. In this
figure x andz are non-dimensional and1x = 0.1, 1y = 0.04.

whereθ is the angle of contact atz = 1, and

h2

a2
= 1− sinθ.

Landau and Lifshitz [3] have further simplified equation (11) by takingkI = 0 and
kII = (1+ z2

x)
3/2/zxx and obtained the exact solution in non-dimensional variables as†

x = a

h
√

2
ln

[√
2a

hz
+
(

2a2

h2z2
− 1

)1/2
]
− a
h

(
2− h

2z2

a2

)1/2

+ x0 (12)

where

x0 = a

h

(
2− h

2

a2

)1/2

− a

h
√

2
ln

[√
2a

h
+
(

2a2

h2
− 1

)1/2
]
.

Since the purpose of this paper is to demonstrate the use of equation (1) and hence of
equation (11), we have solved the quasilinear equation (11) by the line SOR using iteration.
It may be pointed out here that in the numerical solution of equation (11) the condition
kI = 0 has not been used. The numerical solution so obtained is compared with (12) and
shown in figure 2. Since the SOR uses only a second-order difference approximation of
the derivatives in equation (11) some discrepancy occurs between the numerical and exact
solution.

† Note that the correct solution is the negative of the solution in Landau and Lifshitz [3].
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Figure 3. Sketch showing the meniscus in a vertical capillary tube of circular cross section.

As a second application of the method, we consider the problem of the generation of
surface of revolution of the meniscus for a liquid in a capillary tube of circular cross section.
Again taking the height of the meniscush as a non-dimensionalizing length, we first define

r = (x2+ y2)1/2

and then using the chain rule of differentiation, equation (9) reduces to

zrr + 1

r
(1+ z2

r )zr = (1+ z2
r )

3/2(kI + kII ). (13)

Case [2] has solved equation (13) by neglectingzzr and using the modified Bessel functions.
Here we propose to solve the complete equation (13). Furthermore, from [2]

kI + kII = 2h2

a2

(
1− ρa

ρ

)
z (14)

where, as used earlier,

a =
(

2α

ρg

)1/2

(ρ is the density of the liquid andρa the density of air). Referring to figure 3 and using
the simple formula given, e.g. in White [12], we obtain

h2

a2
= cosθ

R(z0+ 1)
whereθ is the angle of contact which is usually very small. The final equation to be solved
is then

zrr + 1

r
(1+ z2

r )zr =
2 cosθ

R(z0+ 1)

(
1− ρa

ρ

)
(1+ z2

r )
3/2z. (15)

The initial conditions are

z(0) = z0 zr(0) = 0. (16)

It must be restated here that all quantities in (15) and (16) are non-dimensional.
Equation (15) under the initial conditions has been solved by forming the system of first-
order equations:

zr = f
fr = 2 cosθ

R(z0+ 1)

(
1− ρa

ρ

)
(1+ f 2)3/2z− 1

r
(1+ f 2)f

z(0) = z0

f (0) = 0
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Figure 4. Cross section of the surface of revolutionz(r) of the meniscus in a vertical capillary
tube of radiusR. All quantities are non-dimensional. The surface is generated by rotating the
curvez(r) about thez-axis.

and using a fourth-order Runge–Kutta method with a step size1r = 0.001. The following
data has been used. From [12] the dimensional quantities are taken as

z0+ h = 15 mm R = 1 mm α = 0.073 Nm−1 ρ = 1 000 kg m−3.

Thus

a2 = 2α

ρg
= 0.000 014 883 m2.

Though the purpose is to demonstrate the generation of a surface, nevertheless, we
have taken the appropriate value ofh and hence ofz0 obtained by solving the equation
z(1; z0) = z0+ 1. Thus

h = 1.052 579 873 mm

so that

z0 = 13.947 420 13 mm.

The dimensionless quantities are

z0 = 13.2507

R = 0.950 046 667

2

(
1− ρa

ρ

)
= 1.997 546 392

θ = 1◦.
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The solution curve obtained by solving (15) and (16) is shown in figure 4. Rotation of this
curve about thez-axis is the required surface of revolution.

3. Conclusion

Surface phenomena play an important role in many physical processes. The main conclusion
of this paper is to show that if the local principal curvatures of the separation surface of
the two media can be related to the properties of the media then the separation surface can
be generated. This is accomplished by a set of elliptic PDEs involving the Beltramians
of coordinates and in which the sum of the principal curvatures appear explicitly, i.e.
equation (1). In the case of the problem of surface determination under surface tension,
Laplace’s formula connects the sum of the principal curvatures with the pressure and viscous
forces. This paper uses the above-mentioned relation and generates the surface formed due
to surface tension in two cases. The numerical result for a fluid resting against a vertical
wall is compared with the available exact solution. It may be restated here that the Cauchy
data to solve equation (11) is used to solve a Dirichlet problem by iteration. In other cases,
equation (1) has to be solved for a prescribed functionR imposing the proper boundary
conditions.
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